Quantitative single-molecule imaging by confocal laser scanning microscopy.

نویسندگان

  • Vladana Vukojevic
  • Marcus Heidkamp
  • Yu Ming
  • Björn Johansson
  • Lars Terenius
  • Rudolf Rigler
چکیده

A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

BACKGROUND Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CC...

متن کامل

Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy.

We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing >10 microm were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution...

متن کامل

International Congress on Photonics in Europe Collocated with LASER 2015

Quantitative confocal fluorescence microscopy without scanning is developed for the study of fast dynamical processes via massively parallel Fluorescence Correlation Spectroscopy (FCS). The potential of this approach is demonstrated using live salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor. This approach paves the way for quantitative ...

متن کامل

Variations of the Normal Human Limbal Stem Cells Detected by In Vivo Confocal Microscopy

Background  To report normal variations of the limbal structures using in vivo laser scanning confocal microscopy. Methods: This was a retrospective study of fourteen eyes from 11 healthy individuals. Confocal imaging of cornea and limbus was performed using Heidelberg Retina Tomograph III Rostock Corneal Module. Results: The typical structure of the palisades of Vogt (POV) was detected ...

متن کامل

Schlieren confocal microscopy for phase-relief imaging.

We demonstrate a simple phase-sensitive microscopic technique capable of imaging the phase gradient of a transparent specimen, based on the Schlieren modulation and confocal laser scanning microscopy (CLSM). The incident laser is refracted by the phase gradient of the specimen and excites a fluorescence plate behind the specimen to create a secondary illumination; then the fluoresence is modula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 47  شماره 

صفحات  -

تاریخ انتشار 2008